IOWA STATE UNIVERSITY

Electrical and Computer Engineering Senior Design

Self-Solving Rubik's Cube

Taylor Burton (Systems Lead) Jacob Campen (Hardware Lead) Casey Cierzan (Materials Lead) Joe Crowley (Testing Lead) Annie (Yung-Hsueh) Lee (Algorithms Lead) Keegan Levings-Curry (Administrative Lead) Luke Schoeberle (Software Design Lead)

Client/Advisor: Dr. Zambreno

sdmay20-29

http://sdmay20-29.sd.ece.iastate.edu

Problem Statement and Project Vision

- A self-contained, self-solving Rubik's cube
 - Can be scrambled by hand
 - Solves itself with no intervention
- Use for recruitment at ISU
 - Displays the possibilities of our degree
 - Hands-on recruitment tool

Source: Takashi Kaburagi

IOWA STATE UNIVERSITY

Requirements

Functional Requirements

- Solved in 2 minutes or less
- The battery lasts for at least one full use case
- Does not rely on external devices (like cameras or robot arms)
- Starts in a solved state

Nonfunctional Requirements

- Resembles a standard Rubik's cube on the exterior
- Easily turned by the user
- Lasts for at least 3 years
- Side length should be 11 cm
- The costs should not exceed \$750

IOWA STATE UNIVERSITY

Engineering Standards and Design Practices

- Follow IEEE standards (hardware and software)
- Push early and often
- Document everything (e.g., schematics and meeting notes)
- Follow a tight budget (\$390.30/\$750)
- Ensure maintainability (at least 3 years)

Final Deliverables due to COVID-19

- Materials for the physical prototype
- Completed solving algorithms
- Untested system code
- CAD models
- Documentation

IOWA STATE UNIVERSITY

Conceptual Sketch

IOWA STATE UNIVERSITY

System Block Diagram

IOWA STATE UNIVERSITY

Risks and Mitigation

Risks

- 1. Size limitations
- 2. Budget constraints
- 3. High capacity batteries
- 4. Safety during construction

Mitigations

- 1. Agreed side length is 11 cm
- 2. The budget is \$750
- 3. Batteries are not high capacity
- 4. Most of system is 3D-printed

IOWA STATE UNIVERSITY

User Interface Description

- From a user's perspective, the interface is mostly the same as a normal cube
- Turned by rotating the outside faces as usual
- There are a few minor differences in our cube
 - Users may feel the motors' resistance when they scramble the cube
 - Users can charge the cube by using the port on the white face's center

Hardware Design

- Hall Effect sensors
- Mechanical considerations
 - Size of cube and internal space
 - Size of motors
 - Operating environment
 - Flat tabletop
- Stepper motors
 - Can be turned manually
- Teensy 4.0 microcontroller
- Batteries

IOWA STATE UNIVERSITY

Software Design

- Embedded software on our Teensy microcontroller
- A mix of pure C code and Arduino code
- Consists of four main parts:
 - Rotation detection software
 - Rotation simulation algorithms
 - Solving algorithms
 - Motor control software

sdmay20-29 Self-Solving Rubik's Cube

IOWA STATE UNIVERSITY

Solving Algorithm Overview

- Implements a layer-solving algorithm in C
- Solves the green face first due to our data structures
- Records the rotations in a linked list
- Consists of four main parts:
 - Utility functions
 - First-layer algorithms
 - Second-layer algorithms
 - Third-layer algorithms

scra	nb	led	lay	but	t fi	om	GR	EEN_	FAC	Ε'	s perspecti	iv
			W	0	0							
			0	Y								
			Y									
Y		W					0	0	W			
Y							0	Y	W		Y	
	0							0	W	W		
			0	W	Y							
				W	W							
				Y	Y							
The												
nic (cui	be 1	S 50	יו כ	ved	1						
Solve	ed	lay	s so	f	rom	GRE	EN.	FAC	E's	p	erspective	
Solve	ed	lay	s so out Y	fi	rom Y	I GRE	EN.	_FAC	E's	p	erspective	
Solve	ed	lay	out Y Y	fi Y Y	rom Y Y	I GRE	EN.	_FAC	E's	p	erspective	
Solve	ed	lay	out Y Y Y	fi Y Y Y	Yed Y Y Y	GRE	EN.	_FAC	E's	p	erspective	
Solve	ed R	lay	s so rout Y Y G	fi Y Y G	Yed Y Y Y G	I GRE	EN.	_FAC	:E's	р 8	erspective:	
Solve	R	lay R	s so vout Y Y Y G G	FI Y Y G G	Y Y Y Y G G	! GRE 0 0	0 0	_FAC 0 0	E's	p	erspective:	
R R R	ed R R	R R R R	s so rout Y Y G G G	fi Y Y G G G	Y Y Y G G G	GRE 0 0 0	0 0	_FAC 0 0	E's	p 0 0 0	erspective: 8 8	
R R R	R R R R	R R R R	s so Yout Y Y G G G W	fi Y Y Y G G G W	Y Y Y G G G W	GRE	0 0 0	_FAC 0 0	E's	p 00 00 00	erspective: B B B	
R R R	R R R	R R R	s so Yout Y G G G W W	FIYYY GGG WW	Y Y Y Y G G G W W	gre 0 0	0 0 0	_FAC 0 0	E's	p 00 00 00	erspective: B B B	

sdmay20-29 Self-Solving Rubik's Cube

IOWA STATE UNIVERSITY

Future Improvements to the Solving Algorithms

- Consider reversing the input rotations as a possible solution
- Choose the best starting face for the current algorithm
- Reduce the number of rotations from 150 to 100 in the current algorithm
- Implement other efficient solving algorithms
- Minimize the cube's spatial movement during the algorithm

Testing Process

- Unit Testing
 - Ex: Motor control circuit
- Integration Testing
 - Ex: Motor integration
- System Testing
 - Ex: Holistic verification

IOWA STATE UNIVERSITY

IOWA STATE UNIVERSITY

IOWA STATE UNIVERSITY

IOWA STATE UNIVERSITY

IOWA STATE UNIVERSITY

IOWA STATE UNIVERSITY

IOWA STATE UNIVERSITY

IOWA STATE UNIVERSITY

IOWA STATE UNIVERSITY

• ⁶+

02

Contributions

- Rotation simulation algorithms and solving algorithms Luke and Annie
- Rotation detection code and motor control code Joe
- Mechanical design and construction Taylor
- PCB design and hardware selection Jacob
- Hardware selection and schematic drafting Casey
- Battery selection and general logistics Keegan

IOWA STATE UNIVERSITY

Future Status

- Obtained all the parts for the prototype
- CAD models are ready for 3D-printing
- Performed unit testing on most of the components
- Need to verify the PCB, the system code, and the full mechanical system
- The basic solving algorithms are fully completed
- Overall, future teams should be able to complete this project

IOWA STATE UNIVERSITY

Thank you!

IOWA STATE UNIVERSITY